Разработка СППР на основе статистических методов для промышленного предприятия в условиях цифрового производства

Цифровая экономика: теория и практика
Авторы:
Аннотация:

Цифровое производство предполагает сокращение времени между наступлением на предприятии некоторого события и ответной реакцией на него за счет того, что сбор информации, ее анализ и выработка корректирующих мер производятся автоматически, без участия человека. Когда же решение принимается персоналом, необходимо сохранять ту же скорость и оперативность анализа и определения ответной реакции, в противном случае снижается гибкость всей производственной системы. Выходом является применение систем поддержки принятия решений, которые на основе актуальной информации проводят модельные расчеты и дают обоснованные рекомендации, ускоряя процесс принятия решения и повышая его качество. Хорошо развитая информационная инфраструктура цифрового производства позволяет создавать соответствующие системы поддержки принятия решений как надстройки над уже имеющимися базами данных, т. е. в СППР требуется реализовать извлечение данных, их обработку на основе выбранных процедур и вывод результатов в формате, удобном для пользователя. Таким образом снижаются затраты на разработку и внедрение системы. В расчетах могут быть использованы данные, характеризующие различные бизнес-процессы предприятия, т. е. полученное решение будет комплексным. Если расчеты, которые проводит СППР, основаны на математических моделях, то, как правило, для правильной интерпретации получаемых результатов от пользователя требуются знания в соответствующей области математики, что отрицательно сказывается на практическом применении такой системы. В то же время математические модели позволяют существенно улучшить качество принимаемых решений, поэтому при разработке СППР необходимо решить данную проблему. Нами разработан макет СППР, который на основе корреляционно-регрессионного анализа выявляет скрытые взаимосвязи между различными показателями деятельности предприятия и с их помощью строит прогнозы. Новизна заключается в предложении набора правил, переводящих результаты модельных расчетов в понятные для пользователей, не знакомых с соответствующей математической теорией, рекомендаций. Это расширяет границы применения корреляционно-регрессионных моделей при принятии практических решений на различных уровнях работы предприятия.